
2025-04-17 05:38:29
精选答案
初等定积分就是计算曲线下方大的面积大小,方法将背积变量区间分成无限小的小格,再乘以响应函数值近似求和取极限,可以证明在积分变量是自变量的话,积分和导数运算是逆运算。
(牛顿莱布尼兹公式)积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
2025-04-17 05:38:29
其他答案
简单说,定积分是在给定区间上函数值的累积。∫[a,b] f(x)dx 表示曲线 f(x) 、直线 x=a、直线 x=b、直线 y=0 围成的面积。
设 F(x) 是 f(x) 的一个原函数,则 ∫[a,b] f(x)dx = F(b) - F(a) 。
因此,要求定积分,只须求不定积分,然后用函数值相减。高中阶段,有以下不定积分公式:
1、∫1dx = x + C (C 表示任意常数,下同)
2、∫x^n dx = 1/(n+1)*x^(n+1)+C 3、∫e^x dx = e^x + C4、∫1/x dx = lnx + C5、∫cosx dx = sinx + C6、∫sinx dx = -cosx + C