2025-03-18 12:38:30
精选答案
三角形符号读作delta,可以用来表示根的判别式;倒三角读作Nabla,一般表示拉普拉斯算子。
拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽·f)。拉普拉斯算子也可以推广为定义在黎曼流形上的椭圆型算子,称为拉普拉斯-贝尔特拉米算子。 扩展资料 一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。
1、公式法可以解所有的一元二次方程,公式法不能解没有实数根的方程(也就是b2-4ac<0的方程)。
2、因式分解法,必须要把等号右边化为0。
3、配方法比较简单:首先将方程二次项系数a化为1,然后把常数项移到等号的右边,最后后在等号两边同时加上一次项系数绝对值一半的平方。
4、求根公式: x=-b±√(b^2-4ac)/2a。 一般地,式子b^2-4ac叫做一元二次方程ax^2+bx+c=0根的判别式,通常用希腊字母“Δ”表示它,即Δ=b^2-4ac. 1、当Δ>0时,方程ax^2+bx+c=0(a≠0)有两个不等的实数根;
2、当Δ=0时,方程ax^2+bx+c=0(a≠0)有两个相等的实数根;
3、当Δ<0时,方程ax^2+bx+c=0(a≠0)无实数根。
2025-03-18 12:38:30
其他答案
△读作“得儿塔”。这个三角符号表示一元二次方程根的判别式。意思是说,一个一元二次方程, 有没有根?通过根的判别式进行判别。例如方程1:X2+2X+1=0,这个方程有没有根呢?△=b^2-4ac=4-4=0,所以有两个根。方程2:X2+X+1=0,△=1-4=-3<0,没有实数根。
